作者:佚名 2020-07-31 10:15:32
数据库
mysql
分布式 本文只是简单介绍一下每种分布式ID生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。
十余年专注成都网站制作,成都定制网页设计,个人网站制作服务,为大家分享网站制作知识、方案,网站设计流程、步骤,成功服务上千家企业。为您提供网站建设,网站制作,网页设计及定制高端网站建设服务,专注于成都定制网页设计,高端网页制作,对成都茶艺设计等多个行业,拥有多年设计经验。
前两天公众号有个粉丝给我留言吐槽最近面试:“四哥,年前我在公司受点委屈一冲动就裸辞了,然后现在疫情严重两个多月还没找到工作,接了几个视频面试也都没下文。好多面试官问完一个问题,紧接着说还会其他解决方法吗?能干活解决bug不就行了吗?那还得会多少种方法?”
面试官应该是对应聘者的回答不太满意,他想听到一个他认为最优的解决方案,其实这无可厚非。同样一个bug,能用一行代码解决问题的人和用十行代码解决问题的人,你会选哪个入职?显而易见的事情!所以看待问题还是要从多个角度出发,每种方法都有各自的利弊。
一、为什么要用分布式ID?
在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?
1、什么是分布式ID?
拿MySQL数据库举个栗子:
在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个MySQL主从同步读写分离也能对付。
但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一ID来标识一条数据,数据库的自增ID显然不能满足需求;特别一点的如订单、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。那么这个全局唯一ID就叫分布式ID。
2、那么分布式ID需要满足那些条件?
二、 分布式ID都有哪些生成方式?
今天主要分析一下以下9种,分布式ID生成器方式以及优缺点:
那么它们都是如何实现?以及各自有什么优缺点?我们往下看
图片源自网络
以上图片源自网络,如有侵权联系删除
1、基于UUID
在Java的世界里,想要得到一个具有唯一性的ID,首先被想到可能就是UUID,毕竟它有着全球唯一的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不推荐!
- public static void main(String[] args) {
- String uuid = UUID.randomUUID().toString().replaceAll("-","");
- System.out.println(uuid);
- }
UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID。
优点:
缺点:
2、基于数据库自增ID
基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:
- CREATE DATABASE `SEQ_ID`;
- CREATE TABLE SEQID.SEQUENCE_ID (
- id bigint(20) unsigned NOT NULL auto_increment,
- value char(10) NOT NULL default '',
- PRIMARY KEY (id),
- ) ENGINE=MyISAM;
- insert into SEQUENCE_ID(value) VALUES ('values');
当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!
优点:
缺点:
3、基于数据库集群模式
前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。
那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?
解决方案:设置起始值和自增步长
MySQL_1 配置:
- set @@auto_increment_offset = 1; -- 起始值
- set @@auto_increment_increment = 2; -- 步长
MySQL_2 配置:
- set @@auto_increment_offset = 2; -- 起始值
- set @@auto_increment_increment = 2; -- 步长
这样两个MySQL实例的自增ID分别就是:
1、3、5、7、9
2、4、6、8、10
那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。
在这里插入图片描述
从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。
增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。
优点:
缺点:
4、基于数据库的号段模式
号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:
- CREATE TABLE id_generator (
- id int(10) NOT NULL,
- max_id bigint(20) NOT NULL COMMENT '当前最大id',
- step int(20) NOT NULL COMMENT '号段的布长',
- biz_type int(20) NOT NULL COMMENT '业务类型',
- version int(20) NOT NULL COMMENT '版本号',
- PRIMARY KEY (`id`)
- )
biz_type :代表不同业务类型
max_id :当前最大的可用id
step :代表号段的长度
version :是一个乐观锁,每次都更新version,保证并发时数据的正确性
id | biz_type | max_id | step | version |
---|---|---|---|---|
1 | 101 | 1000 | 2000 | 0 |
等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。
- update id_generator set max_id = #{max_id+step}, versionversion = version + 1 where version = # {version} and biz_type = XXX
由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。
5、基于Redis模式
Redis也同样可以实现,原理就是利用redis的 incr命令实现ID的原子性自增。
- 127.0.0.1:6379> set seq_id 1 // 初始化自增ID为1
- OK
- 127.0.0.1:6379> incr seq_id // 增加1,并返回递增后的数值
- (integer) 2
用redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDB和AOF
6、基于雪花算法(Snowflake)模式
雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。
在这里插入图片描述
以上图片源自网络,如有侵权联系删除
Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。
Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。
根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。
Java版本的Snowflake算法实现:
- /**
- * Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL
- *
- * https://github.com/beyondfengyu/SnowFlake
- */
- public class SnowFlakeShortUrl {
- /**
- * 起始的时间戳
- */
- private final static long START_TIMESTAMP = 1480166465631L;
- /**
- * 每一部分占用的位数
- */
- private final static long SEQUENCE_BIT = 12; //序列号占用的位数
- private final static long MACHINE_BIT = 5; //机器标识占用的位数
- private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数
- /**
- * 每一部分的最大值
- */
- private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
- private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
- private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);
- /**
- * 每一部分向左的位移
- */
- private final static long MACHINE_LEFT = SEQUENCE_BIT;
- private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
- private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;
- private long dataCenterId; //数据中心
- private long machineId; //机器标识
- private long sequence = 0L; //序列号
- private long lastTimeStamp = -1L; //上一次时间戳
- private long getNextMill() {
- long mill = getNewTimeStamp();
- while (mill <= lastTimeStamp) {
- mill = getNewTimeStamp();
- }
- return mill;
- }
- private long getNewTimeStamp() {
- return System.currentTimeMillis();
- }
- /**
- * 根据指定的数据中心ID和机器标志ID生成指定的序列号
- *
- * @param dataCenterId 数据中心ID
- * @param machineId 机器标志ID
- */
- public SnowFlakeShortUrl(long dataCenterId, long machineId) {
- if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
- throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
- }
- if (machineId > MAX_MACHINE_NUM || machineId < 0) {
- throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
- }
- this.dataCenterId = dataCenterId;
- this.machineId = machineId;
- }
- /**
- * 产生下一个ID
- *
- * @return
- */
- public synchronized long nextId() {
- long currTimeStamp = getNewTimeStamp();
- if (currTimeStamp < lastTimeStamp) {
- throw new RuntimeException("Clock moved backwards. Refusing to generate id");
- }
- if (currTimeStamp == lastTimeStamp) {
- //相同毫秒内,序列号自增
- sequence = (sequence + 1) & MAX_SEQUENCE;
- //同一毫秒的序列数已经达到最大
- if (sequence == 0L) {
- currTimeStamp = getNextMill();
- }
- } else {
- //不同毫秒内,序列号置为0
- sequence = 0L;
- }
- lastTimeStamp = currTimeStamp;
- return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
- | dataCenterId << DATA_CENTER_LEFT //数据中心部分
- | machineId << MACHINE_LEFT //机器标识部分
- | sequence; //序列号部分
- }
- public static void main(String[] args) {
- SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);
- for (int i = 0; i < (1 << 4); i++) {
- //10进制
- System.out.println(snowFlake.nextId());
- }
- }
- }
7、百度(uid-generator)
uid-generator是由百度技术部开发,项目GitHub地址 https://github.com/baidu/uid-generator
uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。
uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。
对于uid-generator ID组成结构:
workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。
参考文献
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md
8、美团(Leaf)
Leaf由美团开发,github地址:https://github.com/Meituan-Dianping/Leaf
Leaf同时支持号段模式和snowflake算法模式,可以切换使用。
号段模式
先导入源码 https://github.com/Meituan-Dianping/Leaf ,在建一张表leaf_alloc
- DROP TABLE IF EXISTS `leaf_alloc`;
- CREATE TABLE `leaf_alloc` (
- `biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
- `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
- `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
- `description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
- `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
- PRIMARY KEY (`biz_tag`)
- ) ENGINE=InnoDB;
然后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式
- leaf.name=com.sankuai.leaf.opensource.test
- leaf.segment.enable=true
- leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8
- leaf.jdbc.username=root
- leaf.jdbc.password=root
- leaf.snowflake.enable=false
- #leaf.snowflake.zk.address=
- #leaf.snowflake.port=
启动leaf-server 模块的 LeafServerApplication项目就跑起来了
号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test
监控号段模式:http://localhost:8080/cache
snowflake模式
Leaf的snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。
- leaf.snowflake.enable=true
- leaf.snowflake.zk.address=127.0.0.1
- leaf.snowflake.port=2181
snowflake模式获取分布式自增ID的测试url:http://localhost:8080/api/snowflake/get/test
9、滴滴(Tinyid)
Tinyid由滴滴开发,Github地址:https://github.com/didi/tinyid。
Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]
在这里插入图片描述
Tinyid提供http和tinyid-client两种方式接入
Http方式接入
(1)导入Tinyid源码:
git clone https://github.com/didi/tinyid.git
(2)创建数据表:
- CREATE TABLE `tiny_id_info` (
- `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
- `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
- `begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
- `max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
- `step` int(11) DEFAULT '0' COMMENT '步长',
- `delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
- `remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
- `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
- `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
- `version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
- PRIMARY KEY (`id`),
- UNIQUE KEY `uniq_biz_type` (`biz_type`)
- ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';
- CREATE TABLE `tiny_id_token` (
- `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
- `token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
- `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
- `remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
- `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
- `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';
- INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
- VALUES
- (1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);
- INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
- VALUES
- (2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);
- INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
- VALUES
- (1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
- INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
- VALUES
- (2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
(3)配置数据库:
- datasource.tinyid.names=primary
- datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver
- datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
- datasource.tinyid.primary.username=root
- datasource.tinyid.primary.password=123456
(4)启动tinyid-server后测试
- 获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c'
- 返回结果: 3
- 批量获取分布式自增ID:
- http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10'
- 返回结果: 4,5,6,7,8,9,10,11,12,13
Java客户端方式接入
重复Http方式的(2)(3)操作
引入依赖
com.xiaoju.uemc.tinyid tinyid-client ${tinyid.version}
配置文件
- tinyid.server =localhost:9999
- tinyid.token =0f673adf80504e2eaa552f5d791b644c
test 、tinyid.token是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token表示可访问的业务类型
- // 获取单个分布式自增ID
- Long id = TinyId . nextId( " test " );
- // 按需批量分布式自增ID
- List< Long > ids = TinyId . nextId( " test " , 10 );
总结
本文只是简单介绍一下每种分布式ID生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。
当前文章:一口气说出9种分布式ID生成方式,面试官有点懵了
标题路径:http://www.stwzsj.com/qtweb/news28/4078.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联